Charge-coupled device
From Wikipedia, the free encyclopedia.

A charge-coupled device (CCD) is a sensor for recording images, consisting of an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to one or other of its neighbours. CCDs are used in digital photography and astronomy (particularly in photometry, optical and UV spectroscopy and high speed techniques such as lucky imaging).
Contents |
Applications
CCDs containing grids of pixels are used in digital cameras, optical scanners and video cameras as light-sensing devices. They commonly respond to 70% of the incident light (meaning a quantum efficiency of about 70%,) making them more efficient than photographic film, which captures only about 2% of the incident light. As a result CCDs were rapidly adopted by astronomers.
An image is projected by a lens on the capacitor array, causing each capacitor to accumulate an electric charge proportional to the light intensity at that location. A one-dimensional array, used in line-scan cameras, captures a single slice of the image, while a two-dimensional array, used in video and still cameras, captures the whole image or a rectangular portion of it. Once the array has been exposed to the image, a control circuit causes each capacitor to transfer its contents to its neighbour. The last capacitor in the array dumps its charge into an amplifier that converts the charge into a voltage. By repeating this process, the control circuit converts the entire contents of the array to a varying voltage, which it samples, digitizes and stores in memory. Stored images can be transferred to a printer, storage device or video display. CCDs are also widely used as sensors for astronomical telescopes, and night vision devices.
An interesting astronomical application is to use a CCD to make a fixed telescope behave like a tracking telescope and follow the motion of the sky. The charges in the CCD are transferred and read in a direction parallel to the motion of the sky, and at the same speed. In this way, the telescope can image a larger region of the sky than its normal field of view.
CCDs are typically sensitive to infrared light, which allows infrared photography, night-vision devices, and zero lux (or near zero lux) video-recording/photography. Because of their sensitivity to infrared, CCDs used in astronomy are usually cooled to liquid nitrogen temperatures, because infrared black body radiation is emitted from room-temperature sources. One other consequence of their sensitivity to infrared is that infrared from remote controls will often appear on CCD-based digital cameras or camcorders, if they don't have infrared filters. Cooling also reduces the array's dark current, improving the sensitivity of the CCD to low light intensities, even for ultraviolet and visible wavelengths.
Thermal noise, dark current, and cosmic rays may alter the pixels in the CCD array. To counter such effects, astronomers take an average of several exposures with the CCD shutter closed. This average is necessary to compensate for random noise. Once developed, the "dark frame" image is then subtracted from the original image to remove the thermal noise effects.
CCD cameras used in astrophotography often require very sturdy mounts mount to cope with vibrations and breezes, along with the tremendous weight that most imaging platforms inherently cause. To take long CCD exposures of galaxies and nebulae, many astronomers use a technique known as auto-guiding. Most autoguiders use off-axis CCD chips to monitor any deviation from the imaging, however, some, like the SBIG AO-7, have the autoguider CCD and the imaging CCD in the same camera. Auto-guiders use a second CCD chip which can rapidly detect period errors in tracking and command the mount's motors to correct for them.
Color cameras
Digital color cameras generally use a Bayer mask over the CCD. Each square of four pixels has one filtered red, one blue, and two green (the human eye is more sensitive to green than either red or blue). The result of this is that luminance information is collected at every pixel, but the color resolution is lower than the luminance resolution.
Better color separation can be reached by three-CCD devices (3CCD) and a dichroic beam splitter prism, that splits the image into red, green and blue components. Each of the three CCDs is arranged to respond to a particular color. Some semi-professional digital video camcorders (and all professionals) use this technique.
Since a high-resolution CCD chip is very expensive as of 2005, a 3CCD high-resolution still camera would be beyond the price range even of many professional photographers. There are some high-end still cameras that use a rotating color filter to achieve both color-fidelity and high-resolution. These multi-shot cameras are rare and can only photograph objects that are not moving.
Competing technologies
Recently it has become practical to create a Active Pixel Sensor (APS) using the CMOS manufacturing process. Since this is the dominant technology for all chip-making, CMOS image sensors are cheap to make and signal conditioning circuitry can be incorporated into the same device. The latter advantage helps mitigate their greater susceptibility to noise, which is still an issue, though a diminishing one. CMOS sensors also have the advantage of lower power consumption than CCDs.
See also
- Frame transfer CCD
- Intensified charge-coupled device
- Super CCD
- CMOS
- Electron-multiplying CCD
- camcorder
- digital photography
- digital camera
- cameraphone