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Abstract
Geometric objects are points, lines, squares, triangles, circles,

cubes, spheres and so on. They have mathematical descriptions and
properties such as length, area and volume. The Hough transform
is a technique that enables such structures to be built by parametric
search among lower-level information primitives.
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Description of Objects

Suppose you have to write a program to “find the rectangles” in an image.
What issues does this bring up?

• How do you describe a rectangle in a computer program?

• How do you relate the description to the image data structure?

• How do you carry out a search?

• What are the efficiency considerations?

• How do you measure performance?

• · · ·
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Geometric Objects

Geometric objects are points, lines, squares, triangles, circles, cubes, spheres
and so on. They have mathematical descriptions and properties such as
length, area and volume.

We are interested in “finding” geometric objects in images because they
can be useful in understanding the location, orientation, shape and other
properties of real objects.

Edge detection identifies pixels that are located on edges. A collection of
edge pixels is not an object. A method to find an object in a set of pixels
is needed.
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Geometric Descriptions

A number of common geometric objects are useful in describing components
of visual objects.

• Straight lines

• Triangles

• Rectangles

• Polygons

• Circles

• Ellipses

• · · ·

Each geometric object has a
mathematical description.

A line is equivalent to a pair of points
{(x0, y0), (x1, y1)}.

A triangle can be described by its
three corners. A circle, by its center
and radius. Etc.
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Two Problems

Two kinds of problems arise in relating geometric objects and image data
structures.

1. Render an object with a given mathematical description into an image.

2. Find objects of certain mathematical types in the data that represents a
real scene.

These two tasks are related but distinct. We are concerned with the second
problem.
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Pixels, Patterns from Points

There is a natural relationship between mathematical points and pixels,
since a pixel with coordinates (u, v) can be regarded as the mathematical
point (u, v).

Sets of pixels in an image that have certain desired properties can be
selected by operations like filtering that look for desired patterns in the
image pixels.

The sets of pixels can be searched for lines that have certain desired
properties (length, orientation, grouping,...)

Lines can be grouped to form higher-level objects.
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Line Search Strategies

Let P = {p0, p1, . . . , pn−1} be a set of n points.

Strategy 1: Find all of the lines that join pairs of dots. Select those lines
that have the desired properties.

Strategy 2: Search in parameter space for lines that fit subsets of the
points with certain specified properties.

Strategy 1 produces n(n − 1)/2 ∼ n2 lines and then n (n(n− 1)/2) ∼ n3

comparisons of every point to all the lines. This is impractical for all but
the simplest problems.

The parameter-space approach is the basis of the Hough Transform
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Lines and Edges

Shown below is an idealized representation of a set of pixels that have been
found by edge detection. The task is to find straight line segments to fit
the data.
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Lines and Edges

A line is a geometric object that can be described by an equation. It is the
collection of all points (xi, yi) that satisfy an equation such as yi = axi + b.

The task is to find a pair of parameters (a, b) for each line that is “in” the
data.

If we were given a set of points that fall on a (single) line then it would be
a simple task to find the parameters.

How do we write an automatic algorithm that can search for an unknown
number of lines in a real data set?
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Hough Transform

The Hough Transform was been invented by Paul Hough in 1962 and
patented by IBM. It has become a standard tool in the domain of computer
vision for the recognition of straight lines, circles and ellipses. The Hough
Transform is particularly robust to missing and contaminated data.

It can conduct a search in parameter space for any number of lines (or other
geometric objects that have parametric descriptions).
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Hough Strategy

The Hough strategy is to find parameter combinations that fit the data.
The slope-intercept form of a straight line is

yi = axi + b

This can be inverted to express the parameter b in terms of a at each data
point.

b = −axi + yi

This represents a straight line in parameter space for each (xi, yi) pair.

Only one parameter combination satisfies all points on a given line. The
parameter-space lines will cross at that (a, b) point.
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Hough Strategy (continued)

Each point in geometric space produces a line in parameter space. Parameter
pairs (−5,−10) and (5, 10) at the crossing points in parameter space define
the geometric lines (shown dotted).
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Example

Find the straight line that passes through the maximum number of points
from the set

{(−4,−1), (−2, 0) , (−1,−1) , (0, 1) , (1, 3) , (2, 2)}

We can use the parametric form y = ax + b for a line. The six points
provide six lines in parametric space.
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Example

A (−4,−1) b = 4a− 1
B (−2, 0) b = 2a
C (−1,−1) b = a− 1
D (0, 1) b = 1
E (1, 3) b = −a + 3
F (2, 2) b = −2a + 2
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Example
• Each line in parameter space

corresponds to a point in geometric

space

• Each point in parameter space

corresponds to a line in geometric

space

• The point where k parameter space

lines cross corresponds to a line

through k points in geometric space

• A few examples are shown at the

right
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Algorithm Idea

The lines in parameter space can be drawn automatically.

Given a set of points from an edge finding algorithm, plot all parameter
space lines and find the major intersections.

This will work with other equations. Let a line or curve be described by an
equation of the form

f(a, b, x, y) = 0

If a set of points (xn, yn), 0 ≤ n ≤ N − 1 is given then one can draw N
curves in parameter space. Each intersection yields a parameter pair for a
curve that passes through a subset of the points. The more lines in the
intersection, the more points on the curve.
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Implementation Approach

Divide parameter space into a set of discrete points, (ai, bj), These should
reasonably cover the space.

Create a set of counters, one for each parameter pair, initialized to zero.
For each point (xn, yn)

For each ai compute b = −aixn + yn

Find the point (ai, bj) closest to (ai, b)
Increment counter for (ai, bj)

The counters with the most points correspond to the parameter pairs for
desirable lines in geometric space.
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Practical Issue

The primary practical issue is determining the location of M representative
points in parameter space. If the range of a and b is bounded by a region of
size A× B then it can be covered by a grid of points spaced by (∆a,∆b).
The number of points is AB/∆a∆b.

A problem with the form y = ax + b is that the slope is unbounded. Lines
that are nearly vertical have very large values of a.

Solution: Use the normal form to represent the lines in geometric space.
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Normal Form

The normal form of a straight line is

ρ = x cos θ + y sin θ

ρ is the shortest distance from the origin to the line and θ is the angle
between the x-axis and the perpendicular from the origin to the line.

Both ρ and θ are bounded: 0 ≤ ρ ≤ R, where R is the maximum distance
of a pixel from the origin of the image and 0 ≤ θ ≤ 2π.

All of the straight lines that pass through the point (xn, yn) have parameters
(ρ, θ) that satisfy

ρ = xn cos θ + yn sin θ

This is a curve in parameter space.
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Normal Form
Normal representation of a line:

n · p = ρ =x cos θ + y sin θ

Let L be a given line and let n be a unit

vector along a line that is perpendicular

to L and that passes through the

origin. Let n have direction cosines

[cos θ, sin θ].

Any point P (x, y) on the line can be

described by a vector p = [x, y]. This

vector can be resolved into a component

along n and another along L.

The component along n is

n · p = ρ =x cos θ + y sin θ
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Normal Form

The diagram on the next page (left) shows a set of points in geometric
space. On the right a solid line is extended through the points and the
perpendicular bisector through the origin is constructed (dashed). The
heavy dark line extending from the origin to the line has length ρ ≈ 9.2 and
angle θ = 45◦.

All of the points are on the line that is perpendicular to the vector

r =
{

ρ∠θ polar form
(ρ cos θ, ρ sin θ) rectangular form

The normal vector r completely describes the line. The vectors r and n are
related by r = |r|n

The task is to discover all of the normal vectors from the edge point data.
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Normal Form
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Normal Form

Each point on the preceding figure
can be used to draw a curve in
parameter space. One parametric
curve for each geometric point.
Curves cross at r = ρ∠θ for
the line through the corresponding
points.
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Normal Form

The crossings occur at angle θ and θ± 180◦, and ρ has opposite sign at the
two angles. Note that r = [ρ cos θ, ρ sin θ] = [−ρ cos(θ ± 180◦),−ρ sin(θ ±
180◦)] so that either point can be used.

The search for the parameters of r r can be conducted in parameter space.
The range of θ can be any 180◦ sector, and the range of ρ is ±R, which is
(at most) the length of the image diagonal.

The search for the normal line parameters can be carried out by dividing
parameter space into discrete regions of size (∆ρ,∆θ), each represented by
a (ρ, θ) parameter pair, and following a counting process.
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Normal Parameter Search

Divide parameter space into a set of discrete points, (ρi, θj). These should
reasonably cover the space.

Create a set of counters, one for each parameter pair, initialized to zero.
For each point (xn, yn)

For each θj compute ρ = xn cos θj + yn sin θj

Find the point (ρi, θj) closest to (ρ, θj)
Increment counter for (ρi, θj)

The counters with the most points correspond to the parameter pairs for
desirable lines in geometric space.
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Example

This is a geometric space which
contains a number of points. The
task is to find the major lines.
There are a number of “noise”
points that may cause confusion.
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Example

The parameter count that is
accumulated for each (ρ, θ) cell
is illustrated by the surface plot
at the right. Note that two cells
have a count of 5 or 6 and the
rest have much lower counts.

The lines corresponding to the two
peaks are shown on the next page.
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Example

The result of the search for lines
produces the results shown at the
right.

The search program finds the
endpoints for each line segment.
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Robustness of Hough Transform

The Hough transform is able to find lines in the presence of noise. It is
better than regression algorithms in dealing with outliers and multiple lines.

An example based on edges detected in a real image shows why this is
necessary. Multiple lines and random points caused by noise in the imaging
and detection process create a difficult environment for the search algorithm.
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Multiple Object Detection
We can use the Hough transform to

find lines that correspond to the edges

of objects. Consider the image of

several geometric objects shown at the

right. This image will have a much

larger number of lines. The program

LinearHoughLink has several options

that can be used to tune the search

for lines to help eliminate those with

undesired characteristics. More about

that below.
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Multiple Object Detection
An edge detection program can be used

to find the points on the edges of

the objects. The objects were located

and numbered with a labelling program.

The points that correspond to object 1

were selected and submitted to a the

LinearHoughLink program. The lines

that were returned were drawn on the

image. We see that the lines correspond

to the edges of the object.

Only the points on the boundary of object

1 were submitted on this trial.
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Multiple Object Detection

A graph in (ρ, θ) space is shown at the

right. The little rectangles with a dot in

the middle indicate the locations of the

(ρ, θ) parameters for each line.

Program parameters were set to find

up to five lines and to eliminate a

neighborhood of 10 × 10 bins around

each selected point in parameter space.
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Multiple Object Detection
Running the program on all of the points

in the image finds lots of lines–mostly

ones that are unwanted. Why does this

happen? The program parameters can

be set to control this kind of situation.

For this run the control parameters were

set very wide.
nlines 20 Max num lines to find

rhobins 300 Number of ρ bins

thetabins 300 Number of θ bins

thresh 30 Min number of pts per line

nbhd 10 Neighborhood radius

minLen 20 Min line length

maxLen 300 Max line length

maxStep 1000 Max line gap length
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Multiple Object Detection
By changing the parameters for

maximum and minimum line length and

maximum gap width the results at the

right are produced.

Lines at the end of 11, top of 8, bottom

of 7 were probably masked by other lines

that have similar parameter descriptions.

Removing all the points on found lines

and searching again can address this

problem.
nlines 200 Max num lines to find

rhobins 300 Number of ρ bins

thetabins 300 Number of θ bins

thresh 30 Min number of pts per line

nbhd 10 Neighborhood radius

minLen 20 Min line length

maxLen 100 Max line length

maxStep 5 Max line gap length
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Real Image Example
An aerial image of an agricultural region is shown on the left.
The result of Canny edge detection is shown on the right. The
Canny detector scale parameters have been chosen to hide fine detail.
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Real Image Example – Continued
The edge image is shown on the left and lines detected by LinearHoughLink
are highlighted in red on the right. Note that the longest lines are
detected. The selection of detected lines is controlled by parameter settings
in LinearHoughLink.
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