	ANALISI MATEMATICA 1 INGEGNERIA. 30 febbraio 1993
	gnomeNome
iviai	• Una e una sola delle 4 affermazioni è corretta: non si accettano reclami in proposito
	• E' meglio rispondere a tutte le domande e senza errori che rispondere a poche
dom	nande con molti errori
1.	Per quali e quanti x è definito $\sqrt{2}^{x^{\sqrt{2}}}$?
	A uno; B nessuno; C centomila; D di più.
2.	Data la funzione $f(x,y) = y^2x\sin y$, dire quale delle seguenti affermazioni è vera. $\triangle (a+b)(a-b) = a^2 + b^2$; $\triangle se f$ non è differenziabile, siamo rovinati $\triangle tutti i triangoli sono isosceli; \triangle f è pari nei giorni pari.$
3.	L'integrale
	$\int_0^1 rac{x}{\sin\!x} dx$
	A esiste secondo Riemann; B esiste secondo Cauchy; C esiste secondo Lebesgue D non ostante le autorevoli testimonianze citate, pare che non sia mai esistito
4.	$(-1)^{1999} =$ \triangle $i;$ \triangle \bigcirc $0;$ \bigcirc $-1;$ \bigcirc Mah! Arrivati a $(-1)^{500}$ quasi tutti perdono il conto.
5.	Sia $f:\mathbb{R} \to \mathbb{R}$. La scrittura: " $orall M>0 \ \exists \varepsilon>0: orall x\in (x_0-\varepsilon,x_0)\Rightarrow f(x) >M$ " proviene da:
	A Iscrizioni Assiro-Babilonesi; B Forme di vita extraterrestri; C Un libro di testo di Analisi 1 del tardo 20° secolo; D si tratta certamente di un falso storico.
6.	Si supponga di dover calcolare:
	$\lim_{x o 0} rac{e^{\operatorname{Sh} \log(1+x^3)} + \int_0^x rac{\sin^2 t}{t} dt - x^x}{x}.$
	Allora: \square Si sbatte dentro $x=0$, come al solito; \square Si incrociano le dita e si applica De L'Hospital, alla garibaldina; \square Smanettando opportunamente con gli asintotici si può ottenere qualunque cosa; \square Non rimane che un pianto sommesso.
7.	Uno studente medio sa rispondere in media a 5 domande su 10 di un test. Se la soglia minima per la sufficienza è 8, qual è la probabilità di passare l'esame? A Decisamente bassina; B Uno, se il vicino è uno studente molto al di sopra della media, e decisamente solidale; C La domanda è priva di senso perché la libertà dell'individuo trascende le fredde leggi della statistica; comunque, la probabilità rimane bassina; D $P = \frac{1}{\pi!}$

	A Difficilmente A e C andranno d'accordo; B Gli insiemi B e C saranno probabilmente complessati; C Bisognerebbe evitare di dare simili giudizi affrettati sugli insiemi, che possono risultare offensivi; D Qualcuno corra a chiudere A prima che ci inondi di elementi.
9.	Funzione di classe C^1 significa: \triangle f ha sana e robusta costituzione; \triangle f è una funzione di prima qualità; \bigcirc f gioca solo nei campionati regionali; \bigcirc f è nata nell'anno 1 dalla Fondazione del Calcolo.
10.	Il numero e : A E' un limite notevole (al superamento dell'esame); B E' la somma di una serie di disgrazie; C E' un numero irrazionale e cocciuto; D Era il numero di telefono di Nepero

Siano A un insieme aperto, B un insieme limitato, C un insieme chiuso. Allora:

8.